Copied to
clipboard

G = C23.4D12order 192 = 26·3

4th non-split extension by C23 of D12 acting via D12/C3=D4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.4D12, (C2×D4).6D6, C4.D4.S3, (C2×C12).14D4, C23.9(C4×S3), C6.D44C4, (C22×C6).13D4, C6.12(C23⋊C4), (C22×Dic3)⋊2C4, C32(C23.D4), C22.13(D6⋊C4), (C6×D4).171C22, C23.7D6.3C2, C23.23D6.4C2, C2.13(C23.6D6), (C2×C4).2(C3⋊D4), (C22×C6).4(C2×C4), (C2×C6).6(C22⋊C4), (C3×C4.D4).1C2, SmallGroup(192,35)

Series: Derived Chief Lower central Upper central

C1C22×C6 — C23.4D12
C1C3C6C2×C6C2×C12C6×D4C23.23D6 — C23.4D12
C3C6C2×C6C22×C6 — C23.4D12
C1C2C22C2×D4C4.D4

Generators and relations for C23.4D12
 G = < a,b,c,d,e | a2=b2=c2=1, d12=c, e2=ca=ac, ab=ba, dad-1=abc, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd11 >

Subgroups: 240 in 68 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, C24, C2×Dic3, C2×C12, C3×D4, C22×C6, C23⋊C4, C4.D4, C22.D4, Dic3⋊C4, C6.D4, C6.D4, C3×M4(2), C22×Dic3, C6×D4, C23.D4, C23.7D6, C3×C4.D4, C23.23D6, C23.4D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C4×S3, D12, C3⋊D4, C23⋊C4, D6⋊C4, C23.D4, C23.6D6, C23.4D12

Character table of C23.4D12

 class 12A2B2C2D34A4B4C4D4E4F6A6B6C6D8A8B12A12B24A24B24C24D
 size 11244241212242424248888448888
ρ1111111111111111111111111    trivial
ρ2111111111-1-111111-1-111-1-1-1-1    linear of order 2
ρ31111111-1-1-1-1-1111111111111    linear of order 2
ρ41111111-1-111-11111-1-111-1-1-1-1    linear of order 2
ρ51111-11-1-1-1-ii111-11i-i-1-1-iii-i    linear of order 4
ρ61111-11-1-1-1i-i111-11-ii-1-1i-i-ii    linear of order 4
ρ71111-11-111i-i-111-11i-i-1-1-iii-i    linear of order 4
ρ81111-11-111-ii-111-11-ii-1-1i-i-ii    linear of order 4
ρ9222-222-200000222-200-2-20000    orthogonal lifted from D4
ρ1022222-1200000-1-1-1-122-1-1-1-1-1-1    orthogonal lifted from S3
ρ1122222-1200000-1-1-1-1-2-2-1-11111    orthogonal lifted from D6
ρ12222-2-2220000022-2-200220000    orthogonal lifted from D4
ρ13222-22-1-200000-1-1-110011-33-33    orthogonal lifted from D12
ρ14222-22-1-200000-1-1-1100113-33-3    orthogonal lifted from D12
ρ152222-2-1-200000-1-11-12i-2i11i-i-ii    complex lifted from C4×S3
ρ162222-2-1-200000-1-11-1-2i2i11-iii-i    complex lifted from C4×S3
ρ17222-2-2-1200000-1-11100-1-1--3--3-3-3    complex lifted from C3⋊D4
ρ18222-2-2-1200000-1-11100-1-1-3-3--3--3    complex lifted from C3⋊D4
ρ1944-40040000004-40000000000    orthogonal lifted from C23⋊C4
ρ2044-400-2000000-220000-2-32-30000    complex lifted from C23.6D6
ρ2144-400-2000000-2200002-3-2-30000    complex lifted from C23.6D6
ρ224-400040-2i2i000-400000000000    complex lifted from C23.D4
ρ234-4000402i-2i000-400000000000    complex lifted from C23.D4
ρ248-8000-4000000400000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C23.4D12
On 48 points
Generators in S48
(1 31)(3 45)(4 16)(5 35)(7 25)(8 20)(9 39)(11 29)(12 24)(13 43)(15 33)(17 47)(19 37)(21 27)(23 41)(26 38)(30 42)(34 46)
(1 43)(2 32)(3 45)(4 34)(5 47)(6 36)(7 25)(8 38)(9 27)(10 40)(11 29)(12 42)(13 31)(14 44)(15 33)(16 46)(17 35)(18 48)(19 37)(20 26)(21 39)(22 28)(23 41)(24 30)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 43 3)(2 32 14 44)(4 12)(5 29 47 23)(6 28 18 40)(7 21 37 39)(9 25 27 19)(10 48 22 36)(11 17 41 35)(13 45 31 15)(16 24)(26 38)(30 34)(42 46)

G:=sub<Sym(48)| (1,31)(3,45)(4,16)(5,35)(7,25)(8,20)(9,39)(11,29)(12,24)(13,43)(15,33)(17,47)(19,37)(21,27)(23,41)(26,38)(30,42)(34,46), (1,43)(2,32)(3,45)(4,34)(5,47)(6,36)(7,25)(8,38)(9,27)(10,40)(11,29)(12,42)(13,31)(14,44)(15,33)(16,46)(17,35)(18,48)(19,37)(20,26)(21,39)(22,28)(23,41)(24,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33,43,3)(2,32,14,44)(4,12)(5,29,47,23)(6,28,18,40)(7,21,37,39)(9,25,27,19)(10,48,22,36)(11,17,41,35)(13,45,31,15)(16,24)(26,38)(30,34)(42,46)>;

G:=Group( (1,31)(3,45)(4,16)(5,35)(7,25)(8,20)(9,39)(11,29)(12,24)(13,43)(15,33)(17,47)(19,37)(21,27)(23,41)(26,38)(30,42)(34,46), (1,43)(2,32)(3,45)(4,34)(5,47)(6,36)(7,25)(8,38)(9,27)(10,40)(11,29)(12,42)(13,31)(14,44)(15,33)(16,46)(17,35)(18,48)(19,37)(20,26)(21,39)(22,28)(23,41)(24,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33,43,3)(2,32,14,44)(4,12)(5,29,47,23)(6,28,18,40)(7,21,37,39)(9,25,27,19)(10,48,22,36)(11,17,41,35)(13,45,31,15)(16,24)(26,38)(30,34)(42,46) );

G=PermutationGroup([[(1,31),(3,45),(4,16),(5,35),(7,25),(8,20),(9,39),(11,29),(12,24),(13,43),(15,33),(17,47),(19,37),(21,27),(23,41),(26,38),(30,42),(34,46)], [(1,43),(2,32),(3,45),(4,34),(5,47),(6,36),(7,25),(8,38),(9,27),(10,40),(11,29),(12,42),(13,31),(14,44),(15,33),(16,46),(17,35),(18,48),(19,37),(20,26),(21,39),(22,28),(23,41),(24,30)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,43,3),(2,32,14,44),(4,12),(5,29,47,23),(6,28,18,40),(7,21,37,39),(9,25,27,19),(10,48,22,36),(11,17,41,35),(13,45,31,15),(16,24),(26,38),(30,34),(42,46)]])

Matrix representation of C23.4D12 in GL8(𝔽73)

72072710000
0721720000
00100000
00010000
000072200
00000100
000000171
000000072
,
720000000
072000000
007200000
000720000
000017100
000007200
000000171
000000072
,
10000000
01000000
00100000
00010000
000072000
000007200
000000720
000000072
,
6043980000
3030190000
06043300000
13043130000
00004627046
0000462700
00000462746
0000002746
,
43606510000
3030190000
00100000
0072720000
000000722
000000721
00001000
000017200

G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,1,1,0,0,0,0,0,71,72,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,71,72],[72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,71,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,71,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[60,30,0,13,0,0,0,0,43,30,60,0,0,0,0,0,9,1,43,43,0,0,0,0,8,9,30,13,0,0,0,0,0,0,0,0,46,46,0,0,0,0,0,0,27,27,46,0,0,0,0,0,0,0,27,27,0,0,0,0,46,0,46,46],[43,30,0,0,0,0,0,0,60,30,0,0,0,0,0,0,65,1,1,72,0,0,0,0,1,9,0,72,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,72,0,0,0,0,72,72,0,0,0,0,0,0,2,1,0,0] >;

C23.4D12 in GAP, Magma, Sage, TeX

C_2^3._4D_{12}
% in TeX

G:=Group("C2^3.4D12");
// GroupNames label

G:=SmallGroup(192,35);
// by ID

G=gap.SmallGroup(192,35);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,141,36,422,184,346,297,851,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^12=c,e^2=c*a=a*c,a*b=b*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^11>;
// generators/relations

Export

Character table of C23.4D12 in TeX

׿
×
𝔽